Optimal partial regularity of second-order parabolic systems under natural growth condition

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary regularity for elliptic systems under a natural growth condition

We consider weak solutions u ∈ u0 +W 1,2 0 (Ω,R )∩L∞(Ω,RN ) of second order nonlinear elliptic systems of the type −div a( · , u,Du) = b( · , u,Du) in Ω with an inhomogeneity obeying a natural growth condition. In dimensions n ∈ {2, 3, 4} we show that Hn−1-almost every boundary point is a regular point for Du, provided that the boundary data and the coefficients are sufficiently smooth. Mathema...

متن کامل

Optimal Interior Partial Regularity for Nonlinear Elliptic Systems for the Case 1<m<2 under Natural Growth Condition

where Ω is a bounded domain in R, u and Bi taking values in R , and Aαi ·, ·, · has value in R . N > 1, u : Ω → RDu {Dαu}, 1 ≤ α ≤ n, 1 ≤ i ≤ N stand for the div of u and 1 < m < 2. To define weak solution to 1.1 , one needs to impose certain structural and regularity conditions on Aαi and the inhomogeneity Bi, as well as to restrict u to a particular class of functions as follows, for 1 < m < ...

متن کامل

On the maximal Lp-regularity of parabolic mixed order systems

We study maximal Lp-regularity for a class of pseudodifferential mixed order systems on a space-time cylinder R×R or X×R, where X is a closed smooth manifold. To this end we construct a calculus of Volterra pseudodifferential operators and characterize the parabolicity of a system by the invertibility of certain associated symbols. A parabolic system is shown to induce isomorphisms between suit...

متن کامل

Partial Regularity For Higher Order Variational Problems Under Anisotropic Growth Conditions

We prove a partial regularity result for local minimizers u : Rn ⊃ Ω → RM of the variational integral J(u,Ω) = ∫ Ω f(∇ku) dx, where k is any integer and f is a strictly convex integrand of anisotropic (p, q)–growth with exponents satisfying the condition q < p(1 + 2 n). This is some extension of the regularity theorem obtained in [BF2] for the case n = 2.

متن کامل

Regularity Result for Quasilinear Elliptic Systems with Super Quadratic Natural Growth Condition

and Applied Analysis 3 Lemma 5 (A-harmonic approximation lemma). Consider fixed positive λ and L, and n,N ∈ N with n ≥ 2. Then for any given ε > 0 there exists δ = δ(n,N, λ, L, ε) ∈ (0, 1] with the following property: for any A ∈ Bil (RnN) satisfying A (], ]) ≥ λ|]| 2 for all ] ∈ R nN

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boundary Value Problems

سال: 2013

ISSN: 1687-2770

DOI: 10.1186/1687-2770-2013-152